Lightweight Security Transmission in Wireless Sensor Networks through Information Hiding and Data Flipping

Author:

Zhou Lan,Kang Ming,Chen WenORCID

Abstract

Eavesdroppers can easily intercept the data transmitted in a wireless sensor network (WSN) because of the network’s open properties and constrained resources. Therefore, it is important to ensure data confidentiality in WSN with highly efficient security mechanisms. We proposed a lightweight security transmission method based on information hiding and random data flipping to ensure that the ally fusion center (AFC) can achieve confidential data transmission over insecure open links. First, the sensors’ local measurements are coded into a customized binary string, and then before data transmission, some parts of the string are flipped by the sensors according to the outputs of a pre-deployed pseudo-random function. The AFC can recover the flipped binaries using the same function and extract the measurement hidden in the string, while the enemy fusion center (EFC) cannot distinguish flipped and non-flipped data at all, and they cannot restore the measurement correctly as long as one bit in the string is not correctly recovered. We proved the security and anti-interference of the scheme through both simulations and physical experiments. Furthermore, the proposed method is more efficient such that it consumes less power than traditional digital encryptions through real power consumption tests.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Secure and Energy-Based STEERA Routing Protocol for Wireless Sensor Networks;Journal of Interconnection Networks;2023-09-29

2. Simon Chaotic: An enhancement of SIMON block cipher by using Arnold and Henon chaotic maps;2022 8th International Conference on Contemporary Information Technology and Mathematics (ICCITM);2022-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3