Abstract
In the paper based on surface plasmon resonance (SPR) in a tilted fiber Bragg grating (TFBG), a novel algorithm is proposed, which facilitates demodulation of surrounding refractive index (SRI) via cladding mode interrogation and accelerates calibration and measurement of SRI. Refractive indices with a tiny index step of 2.2 × 10−5 are prepared by the dilution of glucose aqueous solution for the test and the calibration of this fiber sensor probe. To accelerate the calibration process, automatic selection of the most sensitive cladding mode is demonstrated. First, peaks of transmitted spectrum are identified and numbered. Then, sensitivities of several potentially sensitive cladding modes in amplitude adjacent to the left of the SPR area are calculated and compared. After that, we focus on the amplitudes of the cladding modes as a function of a SRI, and the highest sensitivity of −6887 dB/RIU (refractive index unit) is obtained with a scanning time of 15.77 s in the range from 1520 nm to 1620 nm. To accelerate the scanning speed of the optical spectrum analyzer (OSA), the wavelength resolution is reduced from 0.028 nm to 0.07 nm, 0.14 nm, and 0.28 nm, and consequently the scanning time is shortened to 6.31 s, 3.15 s, and 1.58 s, respectively. However, compared to 0.028 nm, the SRI sensitivity for 0.07 nm, 0.14 nm, and 0.28 nm is reduced to −5685 dB/RIU (17.5% less), −5415 dB/RIU (21.4% less), and −4359 dB/RIU (36.7% less), respectively. Thanks to the calculation of parabolic equation and weighted Gauss fitting based on the original data, the sensitivity is improved to −6332 dB/RIU and −6721 dB/RIU, respectively, for 0.07 nm, and the sensitivity is increased to −5850 dB/RIU and −6228 dB/RIU, respectively, for 0.14 nm.
Funder
Special projects in key fields of colleges and universities in Guangdong Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献