Author:
Kawase Atsushi,Takashima Ouka,Tanaka Satsuki,Shimada Hiroaki,Iwaki Masahiro
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac (DIC) frequently induce drug-induced liver injury (DILI). It is unclear whether macrophages such as M1 and M2 participate in NSAID-associated DILI; elucidating this relationship could lead to a better understanding of the detailed mechanism of DILI. We co-cultured human hepatoma HepG2 cells with M1 or M2 derived from human monocytic leukemia THP-1 cells to examine the roles of M1 and M2 in DIC-induced cytotoxicity. DIC was added to the direct or indirect co-cultures of HepG2 cells with M1 or M2 (HepG2/M1 or HepG2/M2, respectively) at cell ratios of (1:0, 1:0.1, 1:0.4, and 1:1). In both direct and indirect HepG2/M2 co-cultures (1:0.4), there was lower lactate dehydrogenase release compared with HepG2/M1 co-cultures. Other NSAIDs as well as DIC showed similar protective effects of DIC-induced cytotoxicity. There were only slight differences in mRNA levels of apoptosis- and endoplasmic reticulum stress-associated factors between M1 and M2 after DIC treatment, suggesting that other factors determined the protective effects of M2 on DIC-induced cytotoxicity. Levels of high mobility group box 1 (HMGB1) in the medium and the mRNA expression levels of HMGB1 receptors were different between M1 and M2 after DIC treatment. Increased HMGB1 concentrations and expression of toll-like receptor 2 mRNA in M1 were observed compared with M2 after DIC treatment. In conclusion, these results suggested that the HMGB1/TLR2 signaling axis can be suppressed in M2 but not M1, leading to the different roles of M1 and M2 in NSAID-induced cytotoxicity.
Funder
Japan Society for the Promotion of Science
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献