Pharmaceutical Cocrystals of Ethenzamide: Molecular Structure Analysis Based on Vibrational Spectra and DFT Calculations

Author:

Wan Mei,Fang Jiyuan,Xue Jiadan,Liu Jianjun,Qin Jianyuan,Hong ZhiORCID,Li Jiusheng,Du YongORCID

Abstract

Pharmaceutical cocrystals can offer another advanced strategy for drug preparation and development and can facilitate improvements to the physicochemical properties of active pharmaceutical ingredients (APIs) without altering their chemical structures and corresponding pharmacological activities. Therefore, cocrystals show a great deal of potential in the development and research of drugs. In this work, pharmaceutical cocrystals of ethenzamide (ETZ) with 2,6-dihydroxybenzoic acid (26DHBA), 2,4-dihydroxybenzoic acid (24DHBA) and gallic acid (GA) were synthesized by the solvent evaporation method. In order to gain a deeper understanding of the structural changes after ETZ cocrystallization, terahertz time domain spectroscopy (THz-TDS) and Raman spectroscopy were used to characterize the single starting samples, corresponding physical mixtures and the cocrystals. In addition, the possible molecular structures of ETZ-GA, ETZ-26DHBA and ETZ-24DHBA cocrystals were optimized by density functional theory (DFT). The results of THz and Raman spectra with the DFT simulations for the three cocrystals revealed that the ETZ-GA cocrystal formed an O−H∙∙∙O hydrogen bond between the -OH of GA and oxygen of the amide group of the ETZ molecule, and it was also found that ETZ formed a dimer through a supramolecular amide–amide homosynthon; meanwhile, the ETZ-26DHBA cocrystal was formed by a powerful supramolecular acid–amide heterosynthon, and the ETZ-24DHBA cocrystal formed the O−H∙∙∙O hydrogen bond between the 4-hydroxy group of 24DHBA and oxygen of the amide group of the ETZ molecule. It could be seen that in the molecular structure analysis of the three cocrystals, the position and number of hydroxyl groups in the coformers play an essential role in guiding the formation of specific supramolecular synthons.

Funder

Zhejiang Provincial Natural Science Foundation

National Natural Science Foundation of China

Talent project of Zhejiang Provincial Department of science and technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3