Different In Vitro-Generated MUTZ-3-Derived Dendritic Cell Types Secrete Dexosomes with Distinct Phenotypes and Antigen Presentation Potencies

Author:

Sakamoto TakuyaORCID,Koya Terutsugu,Togi MisaORCID,Yoshida Kenichi,Kato Tomohisa,Ishigaki YasuhitoORCID,Shimodaira ShigetakaORCID

Abstract

Human dendritic cell (DC) dexosomes were evaluated for their function and preclinical validation for vaccines. Dexosomes are small DC-secreted vesicles that contain absorbing immune signals. Vaccine manufacturing requires a significant number of monocyte-derived DCs (Mo-DCs) from donor blood; thus, Mo-DC dexosomes are expected to serve as novel materials for cancer vaccination. In this study, we characterized a potential dexosome model using immature and mature MUTZ3-derived DCs (M-imIL-4-DC, M-imIFN-DC, M-mIL-4-DC, and M-mIFN-DC) and their dexosomes (M-imIL-4-Dex, M-imIFN-Dex, M-mIL4-Dex, and M-mIFN-Dex). Despite the lack of significant differences in viability, M-mIFN-DC showed a significantly higher level of yield and higher levels of maturation surface markers, such as CD86 and HLA-ABC, than M-mIL-4-DC. In addition, M-mIFN-Dex expressed a higher level of markers, such as HLA-ABC, than M-mIL-4-Dex. Furthermore, M-mIFN-Dex exhibited a higher level of antigen presentation potency, as evaluated using a MART-1 system, than either M-imIFN-Dex or M-mIL-4-Dex. We found that M-mIFN-Dex is one of the four types of MUTZ3-derived DCs that harbor potential immunogenicity, suggesting that DC dexosomes could be useful resources in cancer immunotherapy.

Funder

Japan Society for the Promotion of Science

Program on Open Innovation Platform with Enterprises, Research Institutes, and Academia of the JST

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3