Light Spectral Composition Modifies Polyamine Metabolism in Young Wheat Plants

Author:

Pál MagdaORCID,Hamow Kamirán ÁronORCID,Rahman AltafurORCID,Majláth Imre,Tajti JuditORCID,Gondor Orsolya KingaORCID,Ahres Mohamed,Gholizadeh FatemehORCID,Szalai Gabriella,Janda Tibor

Abstract

Although light-emitting diode (LED) technology has extended the research on targeted photomorphogenic, physiological, and biochemical responses in plants, there is not enough direct information about how light affects polyamine metabolism. In this study, the effect of three spectral compositions (referred to by their most typical characteristic: blue, red, and the combination of blue and red [pink] lights) on polyamine metabolism was compared to those obtained under white light conditions at the same light intensity. Although light quality induced pronounced differences in plant morphology, pigment contents, and the expression of polyamine metabolism-related genes, endogenous polyamine levels did not differ substantially. When exogenous polyamines were applied, their roborative effect were detected under all light conditions, but these beneficial changes were correlated with an increase in polyamine content and polyamine metabolism-related gene expression only under blue light. The effect of the polyamines on leaf gene expression under red light was the opposite, with a decreasing tendency. Results suggest that light quality may optimize plant growth through the adjustment of polyamine metabolism at the gene expression level. Polyamine treatments induced different strategies in fine-tuning of polyamine metabolism, which were induced for optimal plant growth and development under different spectral compositions.

Funder

National Research Development and Innovation Office, Hungary,

Hungarian Academy of Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3