Lidocaine Inhibited Tendon Cell Proliferation and Extracellular Matrix Production by Down Regulation of Cyclin A, CDK2, Type I and Type III Collagen Expression

Author:

Chen Yen-ChiaORCID,Chang Hsiang-Ning,Pang Jong-Hwei Su,Lin Li-Ping,Chen Jing-Min,Yu Tung-Yang,Tsai Wen-Chung

Abstract

Lidocaine injection is a common treatment for tendon injuries. However, the evidence suggests that lidocaine is toxic to tendon cells. This study investigated the effects of lidocaine on cultured tendon cells, focusing on the molecular mechanisms underlying cell proliferation and extracellular matrix (ECM) production. Tendon cells cultured from rat Achilles tendons were treated with 0.5, 1.0, or 1.5 mg/mL lidocaine for 24 h. Cell proliferation was evaluated by Cell Counting Kit 8 (CCK-8) assay and bromodeoxyuridine (BrdU) assay. Cell apoptosis was assessed by Annexin V and propidium iodide (PI) stain. Cell cycle progression and cell mitosis were assessed through flow cytometry and immunofluorescence staining, respectively. The expression of cyclin E, cyclin A, cyclin-dependent kinase 2 (CDK2), p21, p27, p53, matrix metalloproteinases-2 (MMP-2), matrix metalloproteinases-9 (MMP-9), type I collagen, and type III collagen were examined through Western blotting, and the enzymatic activity of MMP-9 was determined through gelatin zymography. Lidocaine reduced cell proliferation and reduced G1/S transition and cell mitosis. Lidocaine did not have a significant negative effect on cell apoptosis. Lidocaine significantly inhibited cyclin A and CDK2 expression but promoted p21, p27, and p53 expression. Furthermore, the expression of MMP-2 and MMP-9 increased, whereas that of type I and type III collagen decreased. Lidocaine also increased the enzymatic activity of MMP-9. Our findings support the premise that lidocaine inhibits tendon cell proliferation by changing the expression of cell-cycle-related proteins and reduces ECM production by altering levels of MMPs and collagens.

Funder

Linkou Chang Gung Memorial Hospital

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3