Author:
Hao Qianyi,Zhang Guangwang,Zuo Xilong,He Ying,Zeng Hanlai
Abstract
The rice leaf color mutant B03S was previously generated from the photoperiod- and thermo-sensitive genic male sterile (PTGMS) rice line Efeng 1S, of which male sterility manifests by photoperiod and temperature but exhibits mainly temperature-sensitive characteristics. After these plants were deeply transplanted, the new leaves manifested typical zebra stripe patterns. Here, B03S was subjected to deep and shallow transplanting, shading with soil and aluminum foil, and control conditions in situ to determine the cause of the striped-leaf trait. The direct cause of striped leaves is the base of the leaf sheath being under darkness during deep transplanting, of which the critical shading range reached or exceeds 4 cm above the base. Moreover, typical striped leaves were analyzed based on the targeted metabolome method by ultra-performance liquid chromatography/tandem mass spectrometry (UPLC–MS/MS) combined with transcriptome and real-time quantitative PCR (qPCR)-based verification to clarify the metabolic pathways and transcriptional regulation involved. Carotenoids enter the xanthophyll cycle, and the metabolites that differentially accumulate in the striped leaves include zeaxanthin and its derivatives for photooxidative stress protection, driven by the upregulated expression of OsZEP. These findings improve the understanding of the physiological and metabolic mechanisms underlying the leaf color mutation in rice plants, enrich the theoretical foundation of the nonuniform leaf color phenomenon widely found in nature and highlight key advancements concerning rice production involving the transplanting of seedlings or direct broadcasting of seeds.
Funder
National Key R&D Program of China
Hubei Agricultural Science and Technology Innovation Center Program
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis