Functional Characterization of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells

Author:

Fan XuehuiORCID,Cyganek LukasORCID,Nitschke Katja,Uhlig Stefanie,Nuhn Philipp,Bieback KarenORCID,Duerschmied Daniel,El-Battrawy Ibrahim,Zhou XiaoboORCID,Akin Ibrahim

Abstract

Endothelial cells derived from human induced pluripotent stem cells (hiPSC-ECs) provide a new opportunity for mechanistic research on vascular regeneration and drug screening. However, functions of hiPSC-ECs still need to be characterized. The objective of this study was to investigate electrophysiological and functional properties of hiPSC-ECs compared with primary human cardiac microvascular endothelial cells (HCMECs), mainly focusing on ion channels and membrane receptor signaling, as well as specific cell functions. HiPSC-ECs were derived from hiPS cells that were generated from human skin fibroblasts of three independent healthy donors. Phenotypic and functional comparison to HCMECs was performed by flow cytometry, immunofluorescence staining, quantitative reverse-transcription polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), tube formation, LDL uptake, exosome release assays and, importantly, patch clamp techniques. HiPSC-ECs were successfully generated from hiPS cells and were identified by endothelial markers. The mRNA levels of KCNN2, KCNN4, KCNMA1, TRPV2, and SLC8A1 in hiPSC-ECs were significantly higher than HCMECs. AT1 receptor mRNA level in hiPSC-ECs was higher than in HCMECs. AT2 receptor mRNA level was the highest among all receptors. Adrenoceptor ADRA2 expression in hiPSC-ECs was lower than in HCMECs, while ADRA1, ADRB1, ADRB2, and G-protein GNA11 and Gai expression were similar in both cell types. The expression level of muscarinic and dopamine receptors CHRM3, DRD2, DRD3, and DRD4 in hiPSC-ECs were significantly lower than in HCMECs. The functional characteristics of endothelial cells, such as tube formation and LDL uptake assay, were not statistically different between hiPSC-ECs and HCMECs. Phenylephrine similarly increased the release of the vasoconstrictor endothelin-1 (ET-1) in hiPSC-ECs and HCMECs. Acetylcholine also similarly increased nitric oxide generation in hiPSC-ECs and HCMECs. The resting potentials (RPs), ISK1–3, ISK4 and IK1 were similar in hiPSC-ECs and HCMECs. IBK was larger and IKATP was smaller in hiPSC-ECs. In addition, we also noted a higher expression level of exosomes marker CD81 in hiPSC-ECs and a higher expression of CD9 and CD63 in HCMECs. However, the numbers of exosomes extracted from both types of cells did not differ significantly. The study demonstrates that hiPSC-ECs are similar to native endothelial cells in ion channel function and membrane receptor-coupled signaling and physiological cell functions, although some differences exist. This information may be helpful for research using hiPSC-ECs.

Funder

Ibrahim Akin

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3