The Role of Pyrazolopyridine Derivatives on Different Steps of Herpes Simplex Virus Type-1 In Vitro Replicative Cycle

Author:

Miranda Milene D.ORCID,Chaves Otávio AugustoORCID,Rosa Alice S.,Azevedo Alexandre R.ORCID,Pinheiro Luiz Carlos da SilvaORCID,Soares Vinicius C.ORCID,Dias Suelen S. G.ORCID,Abrantes Juliana L.,Bernardino Alice Maria R.,Paixão Izabel C. P.,Souza Thiago Moreno L.ORCID,Fontes Carlos Frederico L.ORCID

Abstract

Herpes simplex virus type-1 (HSV-1) infection causes several disorders, and acyclovir is used as a reference compound. However, resistant strains are commonly observed. Herein, we investigate the effects of N-heterocyclic compounds (pyrazolopyridine derivatives), named ARA-04, ARA-05, and AM-57, on HSV-1 in vitro replication. We show that the 50% effective concentration (EC50) values of the compounds ARA-04, ARA-05, and AM-57 were 1.00 ± 0.10, 1.00 ± 0.05, and 0.70 ± 0.10 µM, respectively. These compounds presented high 50% cytotoxic concentration (CC50) values, which resulted in a selective index (SI) of 1000, 1000, and 857.1 for ARA-04, ARA-05, and AM-57, respectively. To gain insight into which step of the HSV-1 replication cycle these molecules would impair, we performed adsorption and penetration inhibition assays and time-of-addition experiments. Our results indicated that ARA-04 and ARA-05 affected viral adsorption, while AM-57 interfered with the virus replication during its α- and γ-phases and decreased ICP27 content during initial and late events of HSV-1 replication. In addition, we also observed that AM-57 caused a strong decrease in viral gD content, which was reinforced by in silico calculations that suggested AM-57 interacts preferentially with the viral complex between a general transcription factor and virion protein (TFIIBc-VP16). In contrast, ARA-04 and ARA-05 interact preferentially in the proteins responsible for the viral adsorption process (nectin-1 and glycoprotein). Thus, our results suggest that the 1H-pyrazolo[3,4-b]pyridine derivatives inhibit the HSV-1 replicative cycle with a novel mechanism of action, and its scaffold can be used as a template for the synthesis of promising new molecules with antiviral effects, including to reinforce the presented data herein for a limited number of molecules.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3