Abstract
Dysregulation of renin−angiotensin systems during coronavirus disease 2019 (COVID-19) infection worsens the symptoms and contributes to COVID-19 severity and mortality. This study sought to investigate the effect of exogenous angiotensin II (Ang-II) on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T-cells response in recovered COVID-19 patients. Human peripheral blood mononuclear cells (PBMCs) were treated with Ang II and then stimulated with a SARS-CoV-2 peptide pool. T-cell responses were measured using flow cytometry, while enzyme-linked immunosorbent assay (ELISA) and intracellular cytokine staining (ICS) assays determined functional capability and polarization. Additionally, the relative level of protein phosphorylation was measured using a phosphokinase array. Our results showed that Ang II treatment significantly increased the magnitude of SARS-CoV-2-specific T-cell response in stimulated PBMCs with a SARS-CoV-2 peptide pool. Moreover, the phosphorylation levels of numerous proteins implicated in cardiovascular diseases, inflammation, and viral infection showed significant increases in the presence of Ang II. The mitogenic stimulation of PBMCs after Ang II and SARS-CoV-2 peptide pool stimulation showed functional polarization of T-cells toward Th1/Th17 and Th17 phenotypes, respectively. Meanwhile, ELISA showed increased productions of IL-1β and IL-6 in Ang II-stimulated PBMCs without affecting the IL-10 level. To our knowledge, this study is the first to demonstrate that Ang II exaggerates SARS-CoV-2-specific T-cells response. Therefore, during COVID-19 infection, Ang II may aggravate the inflammatory response and change the immune response toward a more inflammatory profile against SARS-CoV-2 infection.
Funder
King Abdullah International Medical Research Center
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献