Intrathecal Actions of the Cannabis Constituents Δ(9)-Tetrahydrocannabinol and Cannabidiol in a Mouse Neuropathic Pain Model

Author:

Casey Sherelle L.ORCID,Mitchell Vanessa A.,Sokolaj Eddy E.,Winters Bryony L.ORCID,Vaughan Christopher W.ORCID

Abstract

(1) Background: The psychoactive and non-psychoactive constituents of cannabis, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), synergistically reduce allodynia in various animal models of neuropathic pain. Unfortunately, THC-containing drugs also produce substantial side-effects when administered systemically. We examined the effectiveness of targeted spinal delivery of these cannabis constituents, alone and in combination. (2) Methods: The effect of acute intrathecal drug delivery on allodynia and common cannabinoid-like side-effects was examined in a mouse chronic constriction injury (CCI) model of neuropathic pain. (3) Results: intrathecal THC and CBD produced dose-dependent reductions in mechanical and cold allodynia. In a 1:1 combination, they synergistically reduced mechanical and cold allodynia, with a two-fold increase in potency compared to their predicted additive effect. Neither THC, CBD nor combination THC:CBD produced any cannabis-like side-effects at equivalent doses. The anti-allodynic effects of THC were abolished and partly reduced by cannabinoid CB1 and CB2 receptor antagonists AM281 and AM630, respectively. The anti-allodynic effects of CBD were partly reduced by AM630. (4) Conclusions: these findings indicate that intrathecal THC and CBD, individually and in combination, could provide a safe and effective treatment for nerve injury induced neuropathic pain.

Funder

National Health and Medical Research Council

Ernest Heine Family Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3