Synovial Fluid Regulates the Gene Expression of a Pattern of microRNA via the NF-κB Pathway: An In Vitro Study on Human Osteoarthritic Chondrocytes

Author:

Cheleschi SaraORCID,Tenti Sara,Lorenzini Sauro,Seccafico Iole,Barbagli Stefano,Frati Elena,Fioravanti AntonellaORCID

Abstract

Synovial fluid (SF) represents the primary source of nutrients of articular cartilage and is implicated in maintaining cartilage metabolism. We investigated the effects of SF, from patients with osteoarthritis (OA), rheumatoid arthritis (RA), and controls, on a pattern of microRNA (miRNA) in human OA chondrocytes. Cells were stimulated with 50% or 100% SF for 24 h and 48 h. Apoptosis and superoxide anion production were detected by cytometry; miRNA (34a, 146a, 155, 181a), cytokines, metalloproteinases (MMPs), type II collagen (Col2a1), antioxidant enzymes, B-cell lymphoma (BCL)2, and nuclear factor (NF)-κB by real-time PCR. The implication of the NF-κB pathway was assessed by the use of NF-κB inhibitor (BAY-11-7082). RA and OA SF up-regulated miR-34a, -146a, -155, -181a, interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, MMP-1, MMP-13, and ADAMTs-5 gene expression, while it down-regulated Col2a1. Pathological SF also induced apoptosis, reduced viability, and decreased BCL2 mRNA, whereas it increased superoxide anions, the expression of antioxidant enzymes, p65 and p50 NF-κB. Opposite and positive results were obtained with 100% control SF. Pre-incubation with BAY-11-7082 counteracted SF effects on miRNA. We highlight the role of the SF microenvironment in regulating some miRNA involved in inflammation and cartilage degradation during OA and RA, via the NF-κB pathway.

Funder

University of Siena

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3