Effects of Suramin on Polycystic Kidney Disease in a Mouse Model of Polycystin-1 Deficiency

Author:

Chang Ming-YangORCID,Hsu Shen-HsingORCID,Ma Li-YiORCID,Chou Li-Feng,Hung Cheng-Chieh,Tian Ya-ChungORCID,Yang Chih-Wei

Abstract

The aberrant activation of the purinergic signaling pathway has been shown to promote cyst growth and fluid secretion in autosomal dominant polycystic kidney disease (ADPKD). Suramin is an anti-parasitic drug that has strong anti-purinergic properties. Whether suramin could have a therapeutic effect on ADPKD has not been fully investigated. We examined the effect of suramin on cyst progression in a Pkd1 microRNAs transgenic mouse model that presented stable Pkd1 knockdown and moderate disease progression. The Pkd1-deficient mice were treated with suramin (60 mg/kg) by intraperitoneal injection twice a week from postnatal days 35 to 90. Kidney-to-body weight ratios, cyst indices, and blood urea nitrogen (BUN) levels were measured. Cell proliferation and macrophage infiltration were determined by immunohistochemistry. The suramin-treated group had significantly lower renal cyst densities, cell proliferation, and macrophage infiltration compared with saline-treated controls. Suramin significantly inhibited ERK phosphorylation and the expression of Il1b, Il6, Nlrp3, Tgfb, Fn1, P2rx7, and P2ry2 mRNAs in the kidneys. However, BUN levels remained high despite the reduction in cyst growth. Furthermore, plasma cystatin C and neutrophil gelatinase-associated lipocalin (NGAL) levels were significantly higher in the suramin-treated group compared with the control group. Periodic acid-Schiff staining revealed degenerative changes and epithelial cell vacuolation in the non-cystic renal tubules, which indicated phospholipidosis following suramin treatment. These results suggest that suramin may reduce renal cyst growth and inflammation, but the associated tubular cell injuries could limit its therapeutic potential. Other purinergic receptor antagonists with less nephrotoxicity may deserve further investigation for the treatment of ADPKD.

Funder

Chang Gung Memorial Hospital

The Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3