CD44 Contributes to the Regulation of MDR1 Protein and Doxorubicin Chemoresistance in Osteosarcoma

Author:

Gerardo-Ramírez Monserrat,Keggenhoff Friederike L.,Giam VanessaORCID,Becker Diana,Groth MarcoORCID,Hartmann Nils,Straub Beate K.ORCID,Morrison Helen,Galle Peter R.ORCID,Marquardt Jens U.ORCID,Herrlich Peter,Hartmann MonikaORCID

Abstract

Osteosarcoma is the most common type of pediatric bone tumor. Despite great advances in chemotherapy during the past decades, the survival rates of osteosarcoma patients remain unsatisfactory. Drug resistance is one of the main reasons, leading to treatment failure and poor prognosis. Previous reports correlated expression of cluster of differentiation 44 (CD44) with drug resistance and poor survival of osteosarcoma patients, however the underlying mechanisms are poorly defined. Here, we investigated the role of CD44 in the regulation of drug chemoresistance, using osteosarcoma cells isolated from mice carrying a mutation of the tumor suppressor neurofibromatosis type 2 (Nf2) gene. CD44 expression was knocked-down in the cells using CRISPR/Cas9 approach. Subsequently, CD44 isoforms and mutants were re-introduced to investigate CD44-dependent processes. Sensitivity to doxorubicin was analyzed in the osteosarcoma cells with modified CD44 expression by immunoblot, colony formation- and WST-1 assay. To dissect the molecular alterations induced by deletion of Cd44, RNA sequencing was performed on Cd44-positive and Cd44-negative primary osteosarcoma tissues isolated from Nf2-mutant mice. Subsequently, expression of candidate genes was evaluated by quantitative reverse transcription PCR (qRT-PCR). Our results indicate that CD44 increases the resistance of osteosarcoma cells to doxorubicin by up-regulating the levels of multidrug resistance (MDR) 1 protein expression, and suggest the role of proteolytically released CD44 intracellular domain, and hyaluronan interactions in this process. Moreover, high throughput sequencing analysis identified differential regulation of several apoptosis-related genes in Cd44-positive and -negative primary osteosarcomas, including p53 apoptosis effector related to PMP-22 (Perp). Deletion of Cd44 in osteosarcoma cells led to doxorubicin-dependent p53 activation and a profound increase in Perp mRNA expression. Overall, our results suggest that CD44 might be an important regulator of drug resistance and suggest that targeting CD44 can sensitize osteosarcoma to standard chemotherapy.

Funder

Deutsche Forschungsgemeinschaft

German Cancer Aid

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3