Advancing Traffic Simulation Precision and Scalability: A Data-Driven Approach Utilizing Deep Neural Networks

Author:

Hao Ruru1ORCID,Ruan Tiancheng2

Affiliation:

1. School of Information Engineering, Chang’an University, Xi’an 710018, China

2. Department of Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA

Abstract

In traditional traffic simulation studies, vehicle behavior has typically been modeled using complex analytical frameworks, which often struggle to encompass the full range of variables affecting vehicle operations. Addressing this gap, our research introduces an innovative data-driven framework for traffic simulation that incorporates human driving data into its decision-making processes. This enables the modeling of diverse vehicle behaviors by taking into account both vehicle-specific characteristics and environmental factors. At the core of this framework are two advanced deep neural networks, convolutional long short-term memory and convolutional gated recurrent unit, which underpin our vehicle traffic simulation model. Utilizing datasets from the Next Generation Simulation project, specifically the I-80 and US-101 road sections, our study further evaluates the framework’s performance through single-step continuous prediction, as well as transferability tests, employing the TransMSEloss function to optimize prediction accuracy. Our findings reveal that the proposed data-driven model significantly outperforms traditional models, achieving an exceptional accuracy of 97.22% in training and 95.76% in testing. Notably, in continuous prediction, our model maintains an 89.57% accuracy up to the fifth step, exceeding the traditional framework’s 82.82% by 5% to 10% at each step. Time cost analysis indicates that while the data-driven framework’s advantages are more pronounced in large-scale simulations, it also demonstrates strong transferability, with a 93.48% accuracy on diverse datasets, showcasing its applicability across different traffic scenarios. This study not only highlights the potential of deep learning in traffic simulation, but also sets a new benchmark for accuracy and scalability in the field.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Postgraduate Research and Practice Innovation Program of Jiangsu Province

State Scholarship Fund of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3