Advances in the Integration of Sustainable Drainage Systems into Urban Planning: A Case Study

Author:

Rodríguez-Rojas María I.1ORCID,Garrido-Jiménez Francisco Javier2ORCID,Abarca-Álvarez Francisco Javier3,Vallecillos-Siles Manuel Ricardo4

Affiliation:

1. Department of Urban and Regional Planning, Higher School of Civil Engineering, University of Granada, 18071 Granada, Spain

2. Almeria City Planning Board—Department of Engineering, University of Almeria, 04120 Almeria, Spain

3. Department of Urban and Regional Planning, Higher School of Architecture, University of Granada, 18071 Granada, Spain

4. City of Almeria Sustainability Area—Department of Economics and Business, University of Almeria, 04120 Almeria, Spain

Abstract

Climate change is arguably the greatest challenge facing cities today. Its severe consequences have created the need for sustainable urban planning. In this regard, Sustainable Drainage Systems (SuDS) have contributed in recent years to alleviating environmental problems caused by soil sealing and enhancing the resilience of cities to climate change. However, in most cases, the level of implementation is limited to solving environmental problems caused by inadequate urban planning. To change this, in recent years some countries have proposed recommendations to integrate these systems into their urban planning regulations, but these have been general and have not defined specific measures. This paper proposes to achieve this goal by using case studies of three countries with similar characteristics (Spain, Italy and France). A common framework for the integration of SuDS in planning has been proposed that can be exported to other similar places. The urban scales of intervention have been defined (city, neighborhood and street), as well as the actions to be carried out (analysis, planning and regulatory measures) and the urban plans to which they should be applied. This proposal represents an advancement in the application of SuDS as a primary control measure. This breakthrough will significantly improve the resilience of the cities of the future, making them more resilient to the effects of weather and climate change.

Publisher

MDPI AG

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3