Investigation of Land–Atmosphere Coupling during the Extreme Rainstorm of 20 July 2021 over Central East China

Author:

Guo Yakai12ORCID,Shao Changliang3,Su Aifang12

Affiliation:

1. China Meteorological Administration Henan Meteorological Bureau, Zhengzhou 450003, China

2. China Meteorological Administration Key Laboratory of Agro Meteorological Support and Application Technology of Henan Province, Zhengzhou 450003, China

3. China Meteorological Administration Meteorological Observation Centre, Beijing 100081, China

Abstract

In this study, a rainstorm of the type experienced on 20 July 2021 over central East China was simulated using the first-generation Chinese Reanalysis datasets and Global Land Data Assimilation System datasets, and the Noah land surface model coupled with the advanced weather research and forecasting model. Based on this, the gridded planetary boundary layer (PBL) profiles and ensemble states within soil perturbations were collected to investigate the typical land–atmosphere coupling chain during this modeled rainstorm by using various local coupling metrics and introduced ensemble statistical metrics. The results show that (1) except for the stratospheric thermodynamics and the surface temperature over mountain areas, the main characteristics of the mid-low atmospheric layers and the surface have been well captured in this modeled rainstorm; (2) the typical coupling intensity is characterized by the dominant morning moistening, an early afternoon weak PBL warming factor of around 2, a noontime buoyant mixing temperature deficit around 274 K, daytime PBL and surface latent flux contributions of around 100 and 280 W/m2, respectively, and significant afternoon soil-surface latent flux coupling; and (3) an overall negative soil–rainfall relationship can be identified from the ensemble metrics in which the moist static energy is more significant than PBL height, and this is consistent with the significance of daytime surface moistening indicated by local coupling metrics. Taking the multi-process chain in chronological order, the wet soil contributes greatly to daytime moisture evaporation, which then increases the early noon PBL warming and enhances the noon period buoyant mixing within weak moist heating; however, this is suppressed by large-scale forcing such as the upper southwestern inflows of rainstorms, which further significantly shapes the spatial distribution of the statistical metrics. These quantitatively described local daytime couplings highlight the potential local application of promoting public weather forecasting efforts, while the high spatial differences in the coupling indicate the more applicable threshold diagnoses within finer-scale spatial investigations.

Funder

Science and Technology Project on Innovation Ecosystem Construction at Zhengzhou Supercomputing Center in Henan province

China Environmental Protection Foundation Blue Mountain Project

China Meteorological Administration Meteorological Observation Centre “Chipset Plan” (Xiaoman I) and “Incubation Project”

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3