Effect of Single and Double Moment Microphysics Schemes and Change in Cloud Condensation Nuclei, Latent Heating Rate Structure Associated with Severe Convective System over Korean Peninsula

Author:

Madhulatha A.12,Dudhia Jimy3ORCID,Park Rae-Seol1ORCID,Bhan Subhash Chander2,Mohapatra Mrutyunjay2

Affiliation:

1. Korea Institute of Atmospheric Prediction Systems (KIAPS), Seoul 07071, Republic of Korea

2. India Meteorological Department (IMD), MoES, New Delhi 110003, India

3. National Centre for Atmospheric Research (NCAR), Boulder, CO 80307, USA

Abstract

To investigate the impact of advanced microphysics schemes using single and double moment (WSM6/WDM6) schemes, numerical simulations are conducted using Weather Research and Forecasting (WRF) model for a severe mesoscale convective system (MCS) formed over the Korean Peninsula. Spatial rainfall distribution and pattern correlation linked with the convective system are improved in the WDM6 simulation. During the developing stage of the system, the distribution of total hydrometeors is larger in WDM6 compared to WSM6. Along with the mixing ratio of hydrometeors (cloud, rain, graupel, snow, and ice), the number concentration of cloud and rainwater are also predictable in WDM6. To understand the differences in the vertical representation of cloud hydrometeors between the schemes, rain number concentration (Nr) from WSM6 is also computed using particle density to compare with the Nr readily available in WDM6. Varied vertical distribution and large differences in rain number concentration and rain particle mass is evident between the schemes. Inclusion of the number concentration of rain and cloud, CCN, along with the mixing ratio of different hydrometers has improved the storm morphology in WDM6. Furthermore, the latent heating (LH) profiles of six major phase transformation processes (condensation, evaporation, freezing, melting, deposition, and sublimation) are also computed from microphysical production terms to deeply study the storm vertical structure. The main differences in condensation and evaporation terms are evident between the simulations due to the varied treatment of warm rain processes and the inclusion of CCN activation in WDM6. To investigate cloud–aerosol interactions, numerical simulation is conducted by increasing the CCN (aerosol) concentration in WDM6, which simulated comparatively improved pattern correlation for rainfall simulation along with intense hydrometer distribution. It can be inferred that the change in aerosol increased the LH of evaporation and freezing and affected the warming and cooling processes, cloud vertical distribution, and subsequent rainfall. Relatively, the WDM6 simulated latent heating profile distribution is more consistent with the ERA5 computed moisture source and sink terms due to the improved formulation of warm rain processes.

Funder

Korea Institute of Atmospheric Prediction Systems

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3