Empirical Models of Respiration and Net Ecosystem Productivity and Their Applications in a Subtropical Coniferous Plantation in China

Author:

Bai Jianhui1ORCID,Yang Fengting2,Xu Mingjie3,Wang Huimin2

Affiliation:

1. LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

2. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

3. College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China

Abstract

Net ecosystem exchange (NEE), solar radiation (including photosynthetically active radiation PAR), and meteorological parameters were measured in a subtropical coniferous plantation in China during 2013–2016. Applying the PAR balance principle at a canopy level and analyzing the observation data, an empirical model of respiration (Re, EMRe) considering 3-factor and 2-factor situations was developed and tested for all sky conditions. Generally, the respiration simulations were in reasonable agreement with the observations for the hourly, monthly, and annual sums of respiration. For example, using 3-factor and 2-factor models, the estimated annual sums of daytime and nighttime respiration in 2013–2016 overestimated that which was observed by about 31% and 26%, respectively. Further applications of EMRe and an empirical model of gross primary production (GPP, EMGPP) developed previously at this site, and an empirical model of net ecosystem productivity (NEP, EMNEP) using 3-factor and 2-factor models were obtained (NEP = GPP-Re) and evaluated for all sky conditions. Generally, the simulations of the hourly, monthly, and annual sums of NEP showed reasonable performances. The estimated NEP values overestimated the observations by 22% and 27% for the hourly sums in 2013–2016 when using the 3-factor and 2-factor models, respectively, and 7% and 12% for annual sums in 2013–2015 (2016 data were not used as the CO2 flux measurements had some problems in the 2016 summer). The NEP estimations were evidently improved when more factors (e.g., dark respiration) influencing Re were considered in the daytime respiration compared to those without considering these factors. To simplify the numerous and complicated CO2 processes in the simulations of Re and NEP, the PAR energy method was applied to capture and describe its main processes and energy interactions. The PAR energy method was suitable for studying the energy relationships associated with CO2 processes and developing empirical models for the simulations of GPP, Re, and NEP. These models were useful tools to investigate the multiple interactions and mechanisms between CO2, other atmospheric compositions, and PAR. Thus, the energy method is suggested to be applied to carbon balance.

Funder

National key R&D program

ESA-MOST China Dragon Cooperation, Dragon 4 and 5 projects

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3