No Response of Surface-Level Atmospheric Electrical Parameters in Israel to Severe Space Weather Events

Author:

Yaniv Roy12,Yair Yoav2ORCID,Price Colin3ORCID,Reuveni Yuval45ORCID

Affiliation:

1. Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel

2. School of Sustainability, Reichman University, Herzliya 4610101, Israel

3. School of Geosciences, Tel Aviv University, Tel Aviv 6997801, Israel

4. Department of Physics, Ariel University, Ariel 4070000, Israel

5. East R&D Center, Ariel 4070000, Israel

Abstract

We report ground-based measurements of the atmospheric electric field (Ez = −potential gradient (PG)) and current density (Jz) that were conducted at two locations in Israel. One is at the Emilio Segre cosmic ray station located on Mt. Hermon (34.45° N, 2020 m AMSL) in northern Israel near the Syrian-Lebanon border, and the other is at the Wise astronomical observatory in the Negev desert highland plateau of southern Israel (31.18° N, 870 m AMSL). We searched for possible effects of strong, short-term solar events on the potential gradient and the vertical current density, as disruptions to the global electric circuit are often observed following strong solar events. The first case study (St. Patrick’s Day, 17 March 2015) was classified as the strongest event of 2015. The second case study (8 September 2017) was categorized as the strongest event of 2017 and one of the twenty strongest events on record to date. The results show that the electrical parameters measured at ground level at both stations were not affected during the two massive proton events and the ensuing geomagnetic storms. The magnetospheric shielding in lower latitudes is strong enough to shield against the flux of energetic particles from solar events, obscuring any impact that may be noticeable above the local daily variations induced by local meteorological conditions (aerosol concentrations, clouds, high humidity, and wind speed), which were investigated as well.

Funder

Israel Science Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3