Performance-Based Evaluation of CMIP5 and CMIP6 Global Climate Models and Their Multi-Model Ensembles to Simulate and Project Seasonal and Annual Climate Variables in the Chungcheong Region of South Korea

Author:

Adelodun Bashir123ORCID,Ahmad Mirza Junaid13,Odey Golden1ORCID,Adeyi Qudus1,Choi Kyung Sook13ORCID

Affiliation:

1. Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

2. Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin 240003, Nigeria

3. Institute of Agricultural Science & Technology, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

Extreme climate change events are major causes of devastating impacts on socioeconomic well-being and ecosystem damage. Therefore, understanding the performance of appropriate climate models representing local climate characteristics is critical for future projections. Thus, this study analyses the performance of 24 GCMs from the Coupled Model Intercomparison Project Phases 5 and 6 (CMIP5 and 6) and their multi-model ensembles in simulating climate variables including average rainfall, maximum (Tmax), and minimum (Tmin) temperatures at annual and seasonal scales over the Chungcheong region of South Korea from 1975 to 2015. A trend analysis was conducted to estimate the future trends in climate variables in the 2060s (2021–2060) and 2080s (2061–2100). Inverse distance weighting and quantile delta mapping were applied to bias-correct the GCM data. Further, six major evaluating indices comprising temporal and spatial performance assessments were used, after which a comprehensive GCM ranking was applied. The results showed that CMIP6 models performed better in simulating rainfall, Tmax, and Tmin at both temporal and spatial scales. For CMIP5, the top three performing models were GISS, ACCESS1-3, and MRI-CGCM3 for rain; CanESM2, GISS, and MPI-ESM-L-R for Tmax; and GFDL, MRI-CGCM3, and CanESM2 for Tmin. However, the top three performing models in the CMIP6 were MRI-ESM2-0, BCC_CSM, and GFDL for rain; MIROC6, BCC_CSM, and MRI-ESM2-0 for Tmax, and GFDL, MPI_ESM_HR, and MRI-ESM2-0 for Tmin. The multi-model ensembles (an average of the top three GCMs) performed better in simulating rain and Tmin for both CMIP5 and CMIP6 compared with multi-model ensembles (an average of all the GCMs), which only performed slightly better in simulating Tmax. The trend analysis of future projection indicates an increase in rain, Tmax, and Tmin; however, with distinct changes under similar radiative forcing levels in both CMIP5 and CMIP6 models. The projections under RCP4.5 and RCP8.5 increase more than the SSP2-4.5 and SSP5-8.5 scenarios for most climate conditions but are more pronounced, especially for rain, under RCP8.5 than SSP5-8.5 in the far future (2080s). This study provides insightful findings on selecting appropriate GCMs to generate reliable climate projections for local climate conditions in the Chungcheong region of South Korea.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3