Application of FY Satellite Data in Precipitation of Eastward-Moving Southwest China Vortex: A Case Study of Precipitation in Zhejiang Province

Author:

Mao Chengyan1,Qing Yiyu2,Qian Zhitong2,Zhang Chao1,Gu Zhenhai1,Gong Liqing1,Liao Junyu1,Li Haowen3

Affiliation:

1. Quzhou Meteorological Bureau, Quzhou 324000, China

2. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing 210044, China

3. Guangzhou Meteorological Observatory, Guangzhou 511430, China

Abstract

Based on the high-resolution data from April to October (the warm season) during the 2010 to 2020 timeframe provided by the FY-2F geostationary meteorological satellite, the classification and application evaluation of the eastward-moving southwest vortex cloud system affecting Zhejiang Province was conducted using cloud classification (CLC) and black body temperature (TBB) products. The results show that: (1) when the intensity of the eastward-moving southwest vortex is strong, the formed precipitation is predominantly regional convective precipitation. The cloud system in the center and southeast quadrant of the southwest vortex is dominated by cumulonimbus and dense cirrus clouds with convective precipitation, while the other quadrants are mainly composed of stratiform clouds, resulting in stable precipitation; (2) The original text is modified as follows: By using the TBB threshold method to identify stratiform and mixed cloud rainfall, we observed a deviation of one order of magnitude. This deviation is advantageous for moderate rain. However, the precipitation results from mixed clouds identified by the TBB threshold method are being overestimated; By means of the application of stratiform and mixed cloud rainfall identified by the TBB threshold method, an order of magnitude deviation was identified (3) The TBB can be consulted to estimate the precipitation, above which there is a large error. Moreover, the dispersion of precipitation produced by deep convective clouds is the largest, while the dispersion of precipitation produced by stratiform clouds is the smallest and has better predictability. Compared to CLC products, cloud type results based on TBB identification are better for convective cloud precipitation application.

Funder

China Meteorological Administration

Zhejiang Meteorological Bureau

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3