An Enhanced Atmospheric Pre-Corrected Differential Absorption (APDA) Algorithm by Extending LUTs Applied to Analyze ZY1-02D Hyperspectral Images

Author:

Zhang Hongwei12,Zhang Hao1ORCID,Zhu Xiaobo3,Zhang Shuning1,Ma Zhonghui4,Hao Xuetao2

Affiliation:

1. Airborne Remote Sensing Center, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. Foshan-Siwei lnnovation Center for Spatial and Temporal Data, Foshan 528051, China

3. China Centre for Resources Satellite Data and Application, Beijing 100094, China

4. China Shenhua Energy Company Limited, Beijing 100011, China

Abstract

Water vapor is a crucial component of the atmosphere. Its absorption significantly influences remote sensing by impacting radiation signals transmitted through the atmosphere. Determining columnar water vapor (CWV) from hyperspectral remote sensing data is essential during the imagery atmospheric correction process. Over the past 40 years, numerous CWV inversion algorithms have been developed, with refinements to enhance retrieval accuracy and reliability. In this study, we proposed an enhanced atmospheric pre-corrected differential absorption (APDA) algorithm. This enhancement was achieved by thoroughly analyzing water vapor absorption in relation to elevation and aerosol optical depth and extending look up tables (LUTs). The enhanced method utilizes a pre-built MODTRAN lookup table and is applied to ZY1-02D hyperspectral data from a satellite launched in 2020. We compared the inversion results of 10 ZY1-02D scenes obtained using the improved method with AERONET measurements and inversion results from commonly used atmospheric correction software, namely, FLAASH and ATCOR. The updated algorithm demonstrated a lower average error (0.0568 g·cm−2) and relative average error (10.49%) compared to the ATCOR software (0.17 g·cm−2 and 40.78%, respectively) and the FLAASH module (0.13 g·cm−2 and 30.82%, respectively). Consequently, the enhanced method outperforms traditional CWV inversion algorithms, especially at high altitudes.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Major Project of High Resolution Earth Observation System

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3