Hurricane Wave Loads on Spar-Type Floating Wind Turbines: A Comparison of Simulation Schemes

Author:

Li Shaopeng1,Wu Teng2

Affiliation:

1. Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL 32611, USA

2. Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY 14260, USA

Abstract

Floating wind turbines are sensitive to hurricane events. Since the turbine rotors are parked and the blades are feathered during hurricanes, the aerodynamic loads due to boundary-layer winds are relatively small compared to the hydrodynamic loads due to sea surface elevations. Hence, accurate modeling of the hurricane wave loads is crucial to ensure the safety of floating wind turbines. During a hurricane, large wave heights with severe flow separation make it inaccurate to use either linear panel method-based models (without nonlinear consideration associated with fluid viscosity) or Morison equation-based models (without unsteady consideration associated with fluid memory). Efforts have been made to advance simulation schemes of hurricane wave loads on spar-type floating wind turbines. This study systematically compares and assesses the efficacy of six hydrodynamic models available in the literature along with a newly proposed model. The ability of these seven hydrodynamic models to capture nonlinear and/or unsteady effects is investigated. As a demonstration example, the wave loads on a spar-type wind turbine are calculated using these seven models to highlight the underlying role of each simulation scheme in accurately acquiring the dynamic responses of this type of offshore floating structure in severe hurricane seas. It is found that the nonlinear viscous term in the Morison equation and hybrid model serves as an important nonlinear damping mechanism. The reduction of the low-frequency wave load and added mass in the modified hybrid model collectively leads to larger displacements compared to those based on the hybrid model. While the displacements based on the stretching method and Rainey’s equation are similarly larger than those based on the Morison equation, their nonlinear wave loads are much smaller than those in FNV theory.

Funder

Institute of Bridge Engineering at the University at Buffalo

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3