Relationship between Summer Synoptic Circulation Patterns and Extreme Precipitation in Northern China

Author:

Li Shuping1ORCID,Feng Guolin23ORCID,Yan Pengcheng4ORCID,Su Tao2ORCID

Affiliation:

1. College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225012, China

2. College of Physical Science and Technology, Yangzhou University, Yangzhou 225012, China

3. National Climate Center, China Meteorological Administration, Beijing 100081, China

4. Institute of Arid Meteorology, China Meteorological Administration, Lanzhou 730020, China

Abstract

Synoptic circulation patterns over the midlatitudes play a pivotal role in regional precipitation changes; however, the synoptic circulation patterns over eastern Asia (35°–60° N, 105°–145° E) and their effects on extreme precipitation events in the North China Plain (NCP) and northeastern China (NEC) remain unclear. The summer daily 500 hPa geopotential height anomaly fields for 1979–2021 are classified into six synoptic circulation patterns using self-organizing map (SOM) cluster analysis. The SOM1 pattern, characterized by a high-pressure ridge over the north of eastern Asia and a trough near the Korean Peninsula, yields decreased precipitation in NEC. The SOM2 pattern reveals a robust high ridge over eastern Asia, resulting in a higher incidence of regional extreme precipitation events (REPEs) of approximately 24% in the NCP. Under the SOM3 pattern, the anomalous cyclonic circulation over eastern Asia leads to above-average precipitation in the NCP. The SOM4 pattern yields the highest incidence of REPEs in NEC, with the lowest incidence of REPEs in the NCP, as the anomalous cyclonic circulation over eastern Asia moves southeastward compared to the SOM3 pattern. The SOM5 pattern presenting an anticyclone–cyclone dipole reduces precipitation in the NCP and NEC, and the anticyclonic circulation near eastern China associated with the SOM6 pattern causes above-average precipitation in the NCP. On interannual time scales, the SOM2 pattern occurrence with an increasing trend tends to induce an increasing summer precipitation trend in the NCP. The SOM3 pattern occurrence is negatively correlated with the summer precipitation in NEC. Overall, classifying the synoptic circulation patterns helps to improve precipitation forecasting and provides insights into the synoptic circulation patterns dominating the occurrences of REPEs.

Funder

National Natural Science Foundation of China

Drought Meteorological Science Research Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3