Prediction of Storm Surge Water Level Based on Machine Learning Methods

Author:

Liu Yun1,Zhao Qiansheng1,Hu Chunchun1,Luo Nianxue1

Affiliation:

1. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China

Abstract

Storm surge disasters result in severe casualties and economic losses. Accurate prediction of storm surge water level is crucial for disaster assessment, early warning, and effective disaster management. Machine learning methods are relatively more efficient and straightforward compared to numerical simulation approaches. However, most of the current research on storm surge water level prediction based on machine learning methods is primarily focused on point predictions. In this study, we explore the feasibility of spatial water level prediction using the ConvLSTM model. We focus on the coastal area of Guangdong Province and employ MIKE21(2019) software to simulate historical typhoons that have made landfall in the region from 1991 to 2018. We construct two datasets: one for direct water level prediction and the other for indirect water level prediction based on water level changes. Utilizing the ConvLSTM network, we employ it to forecast storm surges on both datasets, effectively capturing both temporal and spatial characteristics and thus ensuring the production of dependable results. When directly predicting water levels, we achieve an MAE (mean absolute error) of 0.026 m and an MSE (mean squared error) of 0.0038 m2. In contrast, the indirect prediction approach yields even more promising results, with an MAE of 0.014 m and an MSE of 0.0007 m2. Compared to traditional numerical simulation methods, the ConvLSTM-based approach is simpler, faster, and able to predict water levels accurately without boundary conditions or topographies. Furthermore, we consider worst-case scenarios by predicting the maximum water increase value using the random forest model. Our results indicate that the random forest model can serve as a valuable reference for forecasting the maximum water increase value of typhoon storm surges, supporting effective emergency responses to disasters.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3