The Rainwater Interception Process and Capacity of Urban Tree Organs in Shanghai

Author:

Wang Benyao1,Zhang Yanting1,Guo Jiankang23ORCID

Affiliation:

1. Shanghai Municipal Landscape Management and Instructional Station, Shanghai 200020, China

2. Shanghai Botanical Garden, Shanghai 200231, China

3. Shanghai Engineering Research Center of Sustainable Plant Innovation, Shanghai 200231, China

Abstract

The process of rainwater interception by tree organs is crucial in mitigating the impact of intense rainfall on urban drainage systems, particularly in the context of climate change. For this study, we selected ten commonly found tree species in Shanghai, and the main parts of trees, including their leaves, branches, and bark, were collected to analyze their ability to intercept rainwater. The optimized Artificial Rainfall Simulation System (ARSS) was applied to simulate rainfall. The time-changing process of rainwater interception in three organs was measured during a 180 min rainfall event under four different rainfall intensities (4, 8, 12, and 16 mm/h, respectively). Process models of rainwater interception in different organs were fitted with adsorption kinetic equations. The rainwater interception process of tree organs complied with the quasi second-order adsorption kinetic equation. The rainwater interception capacity values of the leaves, branches, and bark of the ten urban tree species ranged from 0.05 to 0.34 mm, 0.13 to 0.24 mm, and 0.29 to 1.22 mm, respectively. The rainwater interception capacity values of the three organs significantly differ (p < 0.05). The results of this study reveal that bark exhibits the greatest rainwater interception ability. Coniferous tree species have a greater ability to intercept rainwater than broad-leaved tree species. There are also differences in the rainwater interception ability of trees in urban and natural areas.

Funder

Shanghai Engineering Research Center of Urban Trees Ecological Application

2023 Shanghai Botanical Garden Youth Project

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3