Simulating Heavy Rainfall Associated with Tropical Cyclones and Atmospheric Disturbances in Thailand Using the Coupled WRF-ROMS Model—Sensitivity Analysis of Microphysics and Cumulus Parameterization Schemes

Author:

Torsri Kritanai1ORCID,Faikrua Apiwat1,Peangta Pattarapoom1,Sawangwattanaphaibun Rati1,Akaranee Jakrapop1,Sarinnapakorn Kanoksri1

Affiliation:

1. Hydro-Informatics Innovation Division, Hydro-Informatics Institute, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10900, Thailand

Abstract

Predicting heavy rainfall events associated with Tropical Cyclones (TCs) and atmospheric disturbances in Thailand remains challenging. This study introduces a novel approach to enhance forecasting precision by utilizing the coupled Weather Research and Forecasting (WRF) and Regional Oceanic Model (ROMS), known as WRF-ROMS. We aim to identify the optimal combination of microphysics (MP) and cumulus (CU) parameterization schemes. Three CU schemes, namely, Betts-Miller-Janjic (BMJ), Grell 3D Ensemble (G3), and Kain-Fritsch (KF), along with three MP schemes, namely, Eta (ETA), Purdue Lin (LIN), and WRF Single-moment 3-class (WSM3), are selected for the sensitivity analysis. Seven instances of heavy (35.1–90.0 mm) to violent (>90.1 mm) rainfall in Thailand, occurring in 2020 and associated with tropical storms and atmospheric disturbances, are simulated using all possible combinations of the chosen physics schemes. The simulated rain intensities are compared against observations from the National Hydroinformatics Data Center. Performance was assessed using the probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI) metrics. While the models performed well for light (0.1–10.0 mm) to moderate (10.1–35.0 mm) rainfall, forecasting heavy rainfall remained challenging. Certain parameter combinations showed promise, like BMJ and KF with LIN microphysics, but challenges persisted. Analyzing density distribution of daily rainfall, we found effective parameterizations for different sub-regions. Our findings emphasize the importance of tailored parameterizations for accurate rainfall prediction in Thailand. This customization can benefit water resource management, flood control, and disaster preparedness. Further research should expand datasets, focusing on significant heavy rainfall events and considering climate factors, for example, the Madden-Julian Oscillation (MJO) for extended-range forecasts, potentially contributing to sub-seasonal and seasonal (S2S) predictions.

Funder

Science, Research and Innovation Promotion Fund (SRI), Thailand Science Research and Innova-tion

Water Management in Thailand

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference70 articles.

1. Global view of the origin of tropical disturbances and storms;Gray;Mon. Weather Rev.,1968

2. Investigating the Use of a Genesis Potential Index for Tropical Cyclones in the North Atlantic Basin;Holland;J. Clim.,2012

3. Byers, H. (1944). Atmospheric Turbulence and the Wind Structure Near the Surface of the Earthin General Meteorology, McGraw-Hill Book Company Inc.. Chapter XXIV.

4. An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady-State Maintenance;Emanuel;J. Atmos. Sci.,1986

5. Downstream Amplification and Formation of Monsoon Disturbances;Krishnamurti;Mon. Weather Rev.,1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3