Near-Road Traffic Emission Dispersion Model: Traffic-Induced Turbulence Kinetic Energy (TKE) Measurement

Author:

Hu Zhice12ORCID,Noll Kenneth E.1

Affiliation:

1. Department of Civil, Architectural and Environmental Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA

2. RK & Associates, Inc., Warrenville, IL 60555, USA

Abstract

This article delineates the characterization of traffic-induced turbulent kinetic energy (TKE) in areas proximate to roadways using real-world traffic conditions. Traffic-induced TKE serves as a pivotal tool to refine the parameters of eddy diffusivity within air dispersion modeling, thereby facilitating a more accurate representation of near-road model-estimated traffic emission with TKE-related traffic conditions. Six hundred observations facilitated the detailed TKE characterization, which incorporated a comprehensive assessment of wind speed and traffic conditions, including parameters such as vehicle flow rate, speed, and classifications into categories such as heavy-duty vehicles (HDVs) and light-duty vehicles (LDVs). Five-minute measurement intervals were utilized to pinpoint the substantial variations in TKE generated through traffic flow, particularly highlighting the more chaotic yet swiftly dissipating energy contributions from HDVs. Monitoring was conducted on two urban freeways characterized by markedly different traffic compositions (quantified with HDV%) and distinct road configurations. The TKE derived from traffic over five-minute intervals is correlated with concurrently measured variables such as vehicle flow, speed, and traffic types. The ensemble mean method was utilized to delineate the characteristics of traffic-induced TKE during both steady- and unsteady-state traffic flows, with a focus on traffic density as a key parameter. The results reveal different trends in the behavior of traffic induced TKE. The substantial impact of HDV-induced TKE was quantified using a comparative analysis of normalized traffic-induced TKEs between HDVs and LDVs. This analysis demonstrates that the influence exerted by a single HDV is approximately eleven times that of a single LDV in close proximity to road locations. Within the traffic fleet, HDVs constitute only a minor fraction, typically amounting to 1 to 10% of the total vehicle flow rate. However, their considerable impact and positive correlation with traffic induced TKE was evaluated using a detailed analysis of LDV flow subdivisions.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3