The Characteristics and Impact Factors of Sulfate and Nitrate in Urban PM2.5 over Typical Cities of Hangzhou Bay Area, China

Author:

Wang Qiongzhen1,Ding Hao1,Yu Fuwei1,Chao Na1,Li Ying1,Jiang Qiqing1,Huang Yue1,Duan Lian2,Ji Zhengquan1,Zhou Rong1,Yang Zhongping1,Zheng Kaiyun3,Miao Xiaoping1

Affiliation:

1. Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Eco-Environmental Science Research & Design Institute of Zhejiang Province, Hangzhou 310007, China

2. Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China

3. Zhejiang Environment Technology Co., Ltd., Hangzhou 310023, China

Abstract

PM2.5 pollution over Hangzhou Bay area, China has received continuous attention. In this study, PM2.5 samples were collected simultaneously in six typical cities in Zhejiang Province from 15 October 2019 to 15 January 2020 (autumn and winter) and from 1 June to 31 August 2020 (summer), and major water-soluble ions were analyzed. Average concentrations of NO3− and SO42− in the six cities were 3.93–15.64 μg/m3 and 4.61–7.58 μg/m3 in autumn and winter, with mass fractions of NO3− and SO42− in PM2.5 up to 19.6–34.2% and 13.6–26.3%, respectively, while in summer, they were 1.23–2.64 μg/m3 and 2.22–4.14 μg/m3, with mass fractions of 7.0–15.0% and 14.7~25.1%. Both NO3− and SO42− were mostly from gas-to-particle transformation of precursors. High relative humidity in the six cities was suggested to significantly promote the formation of NO3− and SO42−, particularly in autumn and winter, while enhanced atmospheric oxidation favored the formation of SO42− in summer. However, the formation of NO3− was inhibited under a high temperature of >15 °C. The concentrations of SO42− and NO3 were mostly correlated with each other among the six cities. Potential source contribution function analysis indicated that both SO42− and NO3− were mostly from local pollution of Hangzhou Bay area in Zhejiang Province and also transported from Shanghai and the southern region of Jiangsu Province. This study contributed to the understanding of regional characteristics of SO42− and NO3− in Hangzhou Bay area and suggested that joint prevention and control efforts should be strengthened to reduce regional PM2.5 pollution.

Funder

Zhejiang Provincial Natural Science Foundation of China

Zhejiang Province Ecological Environment Research and Achievement Promotion Project

Central Guiding Local Science and Technology Development Fund Project

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3