The Impact of PM10 and Other Airborne Particulate Matter on the Cardiopulmonary and Respiratory Systems of Sports Personnel under Atmospheric Exposure

Author:

Huang Xinheng1

Affiliation:

1. School of Physical Education, Xinyang Normal University, Xinyang 464000, China

Abstract

Respirable particulate matter (PM10) is atmospheric particulate matter with a kinetic diameter of less than or equal to 10 μm in air. According to the definition of the World Health Organization, it is called thoracic-enterable particulate matter because it can enter the body through the respiratory tract and be deposited into the lungs or absorbed into the blood and lymphatic systems. The toxic substances in it can enter the bloodstream directly and cause serious harm to human health. In addition, PM10 has unique physiological and biological effects, making it an important area of atmospheric chemistry research. In this study, two urban neighborhoods and sports companies were selected for the purpose of investigating the effects of PM10 concentrations in the air of neighborhoods and workplaces on people living and working in these environments for a long period of time, as well as synergistic effects between PM10 concentrations and changes in temperature and the incidence of related diseases. By assessing the extent of PM10’s impact on the respiratory system, this study provides basic data for assessing the health hazards of particulate matter in community environments. This study also analyzed the synergistic effects between air pollutant concentrations, temperature changes, and the incidence of related diseases in two cities to investigate the spatial and temporal distribution characteristics of air pollution and the meteorological causes of pollution in China. On this basis, we established a prediction model for related sensitivity diseases to provide theoretical and technical support for the prediction of related sensitivity diseases on a nationwide scale. Meanwhile, our study also provides support to relevant government departments to formulate a scientific basis and preventive and control measures for dealing with air pollution and its effects on human health.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3