Affiliation:
1. Laboratory for Coastal Ocean Variation and Disaster Prediction, South China Sea Institute of Marine Meteorology, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
2. Shanwei Meteorological Service, Shanwei 516600, China
Abstract
In 1998 and 2016, boreal summer intraseasonal oscillation (BSISO) could reach the middle-lower reaches of the Yangtze River basin (YRB), leading to extreme precipitation. Based on multiple daily data, this study reveals the differences in BSISO events and mechanisms between 1998 and 2016. In June–July of 1998 (2016), YRB precipitation was impacted by 30–60-day oscillation, i.e., BSISO1 (10–30-day oscillation, i.e., BSISO2), with two strong (three) precipitation events occurring. In 1998, when BSISO1 was in phases 1–4 (phases 5–8), the YRB experienced a wet (dry) episode. In 2016, when BSISO2 was in phases 1–2 and 7–8 (phases 3–6), the YRB experienced a wet (dry) episode. In 1998, in event 1, the active convection of the YRB first originated in the South China Sea–western Pacific (SCS–WP) and then in the tropical Indian Ocean (IO). In 1998, in event 2, the active convection of the YRB originated in the SCS–WP. In 2016, in events 1 and 3, the active convection of the YRB originated from the SCS–WP. In 2016, in event 2, the active convection of the YRB originated from the tropical IO and the extratropical WP. Different SST and atmospheric circulations explain different BSISO modes that dominate in the YRB. In 1998 (2016), in summer, (no) strong easterly wind anomalies occurred in the SCS–WP, which are favorable (unfavorable) for the enhancement of BSISO1. Accompanying the suppressed BSISO1, BSISO2 was enhanced in 2016.
Funder
Shenzhen Science and Technology Program
the National Key R&D Program of China
the National Natural Science Foundation of China
the Strategic Priority Research Program of Chinese Academy of Sciences
Guangdong Ocean University
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献