Modelling the Impact of Adverse Weather on Airport Peak Service Rate with Machine Learning

Author:

Dalmau Ramon1ORCID,Attia Jonathan1,Gawinowski Gilles1

Affiliation:

1. EUROCONTROL, Centre du Bois des Bordes CS 41005, 91222 Brétigny-sur-Orge, France

Abstract

Accurate prediction of traffic demand and airport capacity plays a crucial role in minimising ground delays and airborne holdings. This paper focuses on the latter aspect. Adverse weather conditions present significant challenges to airport operations and can substantially reduce capacity. Consequently, any predictive model, regardless of its complexity, should account for weather conditions when estimating the airport capacity. At present, the sole shared platform for airport capacity information in Europe is the EUROCONTROL Public Airport Corner, where airports have the option to voluntarily report their capacities. These capacities are presented in tabular form, indicating the maximum number of hourly arrivals and departures for each possible runway configuration. Additionally, major airports often provide a supplementary table showing the impact of adverse weather in a somewhat approximate manner (e.g., if the visibility is lower than 100 m, then arrival capacity decreases by 30%). However, these tables only cover a subset of airports, and their generation is not harmonised, as different airports may use different methodologies. Moreover, these tables may not account for all weather conditions, such as snow, strong winds, or thunderstorms. This paper presents a machine learning approach to learn mapping from weather conditions and runway configurations to the 99th percentile of the delivered throughput from historical data. This percentile serves as a capacity proxy for airports operating at or near capacity. Unlike previous attempts, this paper takes a novel approach, where a single model is trained for several airports, leveraging the generalisation capabilities of cutting-edge machine learning algorithms. The results of an experiment conducted using 2 years of historical traffic and weather data for the top 45 busiest airports in Europe demonstrate better alignment in terms of mean pinball error with the observed departure and arrival throughput when compared to the operational capacities reported in the EUROCONTROL Public Airport Corner. While there is still room for improvement, this system has the potential to assist airports in defining more reasonable capacity values, as well as aiding airlines in assessing the impact of adverse weather on their flights.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3