Calibration of DustTrak and Low-Cost Sensors and Their Application for Assessment of Inhalation Exposures to Traffic-Related PM2.5 and PM1 in Ho Chi Minh City

Author:

Chi Nguyen Doan Thien12ORCID,Ngan Tran Anh12,Cong-Thanh Tran12ORCID,Huy Duong Huu3,Lung Shih-Chun Candice4ORCID,Hien To Thi12ORCID

Affiliation:

1. Faculty of Environment, University of Science, Ho Chi Minh City 700000, Vietnam

2. Vietnam National University, Ho Chi Minh City 700000, Vietnam

3. Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City 700000, Vietnam

4. Research Center for Environmental Changes, Academia Sinica, Taipei 115, Taiwan

Abstract

The in-traffic microenvironment can enhance personal exposure to fine particulate matter (PM). With this study, we aimed to calibrate a DustTrak instrument (DustTrak 8533 DRX Aerosol Monitor, TSI Incorporated, Shoreview, MN, USA) and low-cost sensors (AS-LUNG-P sensors) and then assess inhalation exposure to PM2.5 and PM1 for different commuters in central areas of Ho Chi Minh City (HCM). The DustTrak instrument and low-cost sensors were calibrated using a gravimetric method under side-by-side conditions. Relationships between the DustTrak signals and PM concentrations measured by the gravimetric method were identified using simple linear regression models for PM2.5 (R2 = 0.998, p-value < 0.05) and PM1 (R2 = 0.989, p-value < 0.05). Meanwhile, PM concentrations determined by the AS-LUNG-P sensors and the gravimetric method were correlated using two-segmented linear regressions. To obtain the corresponding two-segment regression equations, the response of the AS-LUNG-P sensors was compared with the corrected DustTrak data. The coefficient of variation (CV) evaluated for all sensors was smaller than 10%, indicating that the data were applicable for particle assessment. For inhalation exposure assessment, the results showed that commuters using open transport modes, such as bikes, motorbikes, and walking, were exposed to more PM than those using closed transport modes (e.g., cars). Specifically, the bicyclists had the highest inhaled doses of PM among the open transport groups. PM exposure levels in the morning were higher than in the afternoon. Additionally, exposure levels to PM concentrations rapidly increased when passing through intersections of major roads and moderately decreased when using surgical facemasks.

Funder

Vietnam National University, Ho Chi Minh City

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3