City-Scale Aerosol Loading Changes in the Sichuan Basin from 2001 to 2020 as Revealed by MODIS 1 km Aerosol Product

Author:

Wang Ruixin1,Cai Hongke1ORCID

Affiliation:

1. Plateau Atmospheric and Environment Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China

Abstract

Long-term high-resolution monitoring of aerosol optical depth (AOD) is necessary to understand air pollution problems and climate change at regional to urban scales. Based on the 1 km AOD dataset retrieved by the MODIS Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC), the spatial-temporal evolutionary trends of AOD in the Sichuan Basin (SCB), Southwest China, and its 17 subordinate cities were analyzed from 2001 to 2020. In the past 20 years, the annual average AOD in SCB gradually decreased from south to north. The highest AOD of SCB in spring was 0.62, followed by an average AOD value of 0.60 in winter. At the city scale, Zigong, Neijiang, and Ziyang were identified as the three most polluted cities within the SCB. The average AOD in the SCB increased to 0.68 and 0.69 in February and March, respectively, and significantly decreased to 0.41 and 0.43 in June and July, respectively. The interannual AOD in the SCB presented an increasing trend from 2001 to 2010, with a range of 0.50 to 0.70, whereas it showed a decreasing trend from 2011 to 2020, with a range of 0.68 to 0.35. In spring, the annual average AOD at the district level showed significant high values from 2005 to 2012. In winter, the interannual AOD increased significantly, with high values concentrated in 2008, 2010, 2011, and 2013. The occurrence frequency of AOD in the SCB was mainly distributed between 0.2~0.5 and 1.5. There also was an increasing trend of AOD in the SCB from 2001 to 2008 and a decreasing trend from 2009 to 2020. The results of this study hold significance for further understanding the climatic characteristics and environmental effects of regional atmospheric aerosols.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3