Adapting Almond Production to Climate Change through Deficit Irrigation and Foliar Kaolin Application in a Mediterranean Climate

Author:

Barreales David123ORCID,Capitão Susana12,Bento Albino António12ORCID,Casquero Pedro A.3ORCID,Ribeiro António Castro12ORCID

Affiliation:

1. Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal

2. Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal

3. Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Escuela de Ingeniería Agraria y Forestal, Universidad de León, Avenida de Portugal 41, 24009 León, Spain

Abstract

Irrigation is the best strategy to reduce the adverse effects of water stress on almond trees [Prunus dulcis (Mill) D.A. Web] and improve their productivity. However, in the current context of climatic change, in which the amount of water available for irrigation is increasingly limited, deficit irrigation (DI) strategies have become essential in the almond orchards of southern Europe. Other practices, such as the foliar application of reflective compounds, are being implemented. A three-year experiment (2019–2021) was set in a factorial design in which the effect of regulated deficit irrigation and foliar kaolin spray was evaluated on physiological (predawn leaf water potential, relative water content, leaf area, leaf gas exchange, and chlorophyll fluorescence) and agronomic parameters (yield, yield components, and water use efficiency (WUE)). The treatments include full irrigation (FI), which received 100% of ETc (crop evapotranspiration) during all irrigation seasons; regulated deficit irrigation (RDI), which received 100% of ETc until the kernel-filling stage, reducing the application to 35% ETc during the kernel-filling stage until harvest; and both irrigation regimes combined with kaolin application and two cultivars, Constantí and Vairo. More negative water potential values were observed in the RDI treatments compared to the FI treatments. There were no significant differences in the stomatal conductance, photosynthetic rate, or transpiration rate between treatments with RDI and FI, demonstrating the almond tree’s good adaptation to irrigation reduction in the kernel-filling stage. The two cultivars had different responses in cumulative yield throughout the three years of the trial. The cv. Constantí did not present significant differences between the FI and RDI treatments, translating into improved WUE. In contrast, the cv. Vairo suffered a reduction in accumulated performance in the RDI treatments with respect to the FI. The foliar application of kaolin did not present differences in yield and very few in the physiological activity of the almond trees. With the results obtained, we can suggest that under the conditions of our experiment, the combination of RDI and the kaolin foliar application can help save irrigation water and produce almonds more sustainably.

Funder

PT2020 and EAFRD

Foundation for Science and Technology

FCT/MCTE

CIMO

Associate Laboratory SusTEC

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3