Evaluation of IPCC Models’ Performance in Simulating Late-Twentieth-Century Weather Patterns and Extreme Precipitation in Southeastern China

Author:

Wang Yongdi1ORCID,Sun Xinyu2

Affiliation:

1. School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Jiangsu Technology & Engineering Center of Meteorological Sensor Network, School of Electronic & Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Climate model evaluation work has made progress both in theory and practice, providing strong support for better understanding and predicting climate change. However, at the weather scale, there is relatively little assessment of climate models in terms of daily-scale climate phenomena, such as storm frequency and intensity. These weather-scale variables are of significant importance for our understanding of the impacts of climate change. In order to assess the capability of climate models to simulate weather-scale climate patterns, this study employs Self-Organizing Maps (SOMs) for weather pattern classification. By combining different evaluation metrics, varying the number of SOM types, changing the size of the study area, and altering the reference datasets, the climate models are evaluated to ensure the robustness of the assessment results. The results demonstrate that the size of the study area is positively correlated with observed differences, and there are correlations among different evaluation metrics. The highest correlation is observed between evaluation metrics in large-scale and small-scale spatial domains, while the correlation with SOM size is relatively low. This suggests that the choice of evaluation metrics has a minor impact on model ranking. Furthermore, when comparing the correlation coefficients calculated using the same evaluation metrics for different-sized regions, a significant positive correlation is observed. This indicates that variations in the size of the study area do not significantly affect model ranking. Further investigation of the relationship between model performance and different SOM sizes shows a significant positive correlation. The impact of dataset selection on model ranking is also compared, revealing high consistency. This enhances the reliability of model ranking. Taking into account the influence of evaluation metric selection, SOM size, and reanalysis data selection on model performance assessment, significant variations in model ranking are observed. Based on cumulative ranking, the top five models identified are ACCESS1-0, GISS-E2-R, GFDL-CM3, MIROC4h, and GFDL-ESM2M. In conclusion, factors such as evaluation metric selection, study area size, and SOM size should be considered when assessing model ranking. Weather pattern classification plays a crucial role in climate model evaluation, as it helps us better understand model performance in different weather systems, assess their ability to simulate extreme weather events, and improve the design and evaluation methods of model ensemble predictions. These findings are of great significance for optimizing and strengthening climate model evaluation methods and provide valuable insights for future research.

Funder

Science Foundation of Nanjing University of Information Science & Technology

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3