Research on a Clustering Forecasting Method for Short-Term Precipitation in Guangdong Based on the CMA-TRAMS Ensemble Model

Author:

Zheng Jiawen1ORCID,Ren Pengfei2ORCID,Chen Binghong1,Zhang Xubin3ORCID,Cai Hongke4ORCID,Li Haowen1

Affiliation:

1. Guangzhou Meteorological Observatory, Guangzhou 511430, China

2. Guangdong Meteorological Observatory, Guangzhou 510080, China

3. Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, Guangzhou Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou 510640, China

4. Plateau Atmospheric and Environment Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China

Abstract

In light of the 2020–2021 flood season in Guangdong, we conducted a comprehensive assessment of short-term precipitation forecasts generated by the ensemble prediction system (EPS) based on the China Meteorological Administration Tropical Regional Atmosphere Model for the South China Sea (CMA-TRAMS). Furthermore, we applied four distinct strategies to cluster the ensemble forecast data produced by the model for precipitation, aiming to enhance our understanding of their applicability in short-term precipitation forecasting for Guangdong. Our key findings were as follows.: Precipitation during the 2020–2021 flood season in Guangdong exhibited distinct characteristics. The impacting areas of frontal and subtropical high-edge rainfall were relatively scattered, predominantly occurring in the evening and nighttime. In contrast, monsoon precipitation and return-flow precipitation were concentrated, with their impacts lasting from early morning to evening. Notably, the errors using the ensemble maximum and minimum values were large, while the errors for the ensemble mean values and medians were small. This indicated that the model’s short-term precipitation forecasts possessed a high degree of stability. The vertical shear of different types of precipitation exerted a noticeable influence on the model’s performance. The model consistently displayed a tendency to underestimate short-term precipitation in Guangdong; however, this bias decreased with longer lead times. Simultaneously, the model’s dispersion increased with longer lead times. In terms of mean absolute error (MAE) test results, there was little difference in the performance of ensemble primary forecasts under various strategies, while the “ward” strategy performed well in sub-primary cluster forecasts. This was particularly true for areas and types of precipitation where the model’s performance was poor. While the clustering approach lagged behind ensemble mean forecasts in predicting rainy conditions, it exhibited improvement in forecasting short-term heavy rainfall events. The “complete” and “single” strategies consistently delivered the most accurate forecasts for such events. Our study sheds light on the effectiveness of clustering methods in improving short-term precipitation forecasts for Guangdong, particularly in regions and conditions where the model initially struggled. These findings contribute to our understanding of precipitation forecasting during flood seasons and can inform strategies for enhancing forecast accuracy in similar contexts.

Funder

Guangzhou Municipal Science and Technology Planning Project of China

China Meteorological Administration Review and Summary Special Project

Science and Technology Research Project of Guangdong Meteorological Observatory

National Key Research and Development Program of China

National Natural Science Foundation of China

Guangzhou Basic and Applied Basic Research Project

Guangzhou Meteorological Society Science and Technology Research Project

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3