Estimation of Daily Mean Land Surface Temperature over the Qinghai–Tibet Plateau Based on an RTM-DTC Model

Author:

Zhao Lei123,Xue Dongjian12,Zhang Xiaoxuan2ORCID,Fu Yudi2

Affiliation:

1. Key Laboratory of the Northern Qinghai–Tibet Plateau Geological Processes and Mineral Resources, Xining 810300, China

2. College of Earth Science, Chengdu University of Technology, No. 1, East 3rd Road, Erxianqiao, Chengdu 610059, China;zhangxiaoxuan@stu.cdut.edu.cn (X.Z.)

3. Surveying, Mapping and Geographic Information Center of Sichuan Geological Survey Research Institute, Chengdu 610072, China

Abstract

Accurately estimating daily mean land surface temperature (LST) is crucial for studying the urban heat island effect, land–atmosphere energy exchange, and global climate change. However, limited research has been conducted on average surface temperature estimation, particularly in high-altitude regions like the Qinghai–Tibet Plateau with extensive cloud cover. In this study, we propose the Reanalysis Data and Thermal Infrared Remote Sensing Data Merging-Diurnal Temperature Cycle (RTM-DTC) model specifically for the Qinghai–Tibet Plateau, successfully estimating mean LST using the model. We apply the RTM method to reconstruct LST under cloud cover from the MODIS LST product and calculate the average temperature using the DTC model. Validation with in situ measurements from seven meteorological stations on the Tibetan Plateau yielded daily scale RMSEs ranging from 1.81 K to 2.021 K and monthly scale RMSEs ranging from 1.77 K to 2.0 K, with an average RMSE of 1.91 K. These results demonstrate the adaptability of the RTM-DTC model and its ability to depict the annual variation curve of the mean surface temperature, and provide further research on RTM-DTC as a valuable approach.

Funder

Key Laboratory of the Northern Qinghai–Tibet Plateau Geological Processes and Mineral Resources

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3