Recent Advances of Single-Atom Metal Supported at Two-Dimensional MoS2 for Electrochemical CO2 Reduction and Water Splitting

Author:

Wang Jiahao1,Gan Xiaorong12ORCID,Zhu Tianhao3,Ao Yanhui1,Wang Peifang1

Affiliation:

1. Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China

2. Key Lab of Modern Optical Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China

3. Department of Civil and Environmental Engineering, University of Michigan, 1320 Beal Avenue, Ann Arbor, MI 48109, USA

Abstract

Due to increasing concerns about global warming and energy crisis, intensive efforts have been made to explore renewable and clean energy sources. Single-atom metals and two-dimensional (2D) nanomaterials have attracted extensive attention in the fields of energy and environment because of their unique electronic structures and excellent properties. In this review, we summarize the state-of-art progress on the single-atom metal supported at 2D MoS2 (single-atom metal/2D MoS2) for electrochemical CO2 reduction and water splitting. First, we introduce the advantages of single-atom metal/2D MoS2 catalysts in the fields of electrocatalytic CO2 reduction and water splitting, followed by the strategies for improving electrocatalytic performances of single-atom metal/2D MoS2 hybrid nanomaterials and the typical preparation methods. Furthermore, we discuss the important applications of the nanocomposites in electrocatalytic CO2 reduction and water splitting via some typical examples, particularly focusing on their synthesis routes, modification approaches, and physiochemical mechanisms for improving their electrocatalytic performances. Finally, our perspectives on the key challenges and future directions of exploring high-performance metal single-atom catalysts are presented based on recent achievements in the development of single-atom metal/2D MoS2 hybrid nanomaterials.

Funder

National Natural Science Foundation of China

Key Lab of Modern Optical Technologies of Jiangsu Province, Soochow University

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3