Aerosol Types and Their Climatology over the Dust Belt Region

Author:

Samman Ahmad E.1ORCID,Butt Mohsin J.1ORCID

Affiliation:

1. Department of Meteorology, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

Aerosols, both natural and anthropogenic, are an important but complex component of the Earth’s climate system. Their net impact on climate is about equal in magnitude to that of greenhouse gases but can vary significantly by region and type. Understanding and quantifying these aerosol effects is critical for accurate climate modeling and for developing strategies to mitigate climate change. In this paper, we utilize AERONET (Aerosol Robotic NETwork) data from 10 stations situated in the dust belt region to characterize aerosol properties essential for climate change assessment. Aerosol optical depth (AOD) data at 500 nm and Ångström exponent (α) data at the pair of wavelengths of 440 and 870 nm (α440-870) in the study region are analyzed to discriminate among different types of aerosols. The annual and monthly variabilities in AODs are analyzed to see the aerosols trend in the study region. In addition, the AOD and α440-870 data are utilized in order to determine different aerosol types during the period of study. Furthermore, the correlation coefficient between AODs and various meteorological parameters (temperature, wind speed, wind direction, relative humidity, and visibility) is analyzed. The results of the study indicate that Tamanrasset (2.49%), KAUST (1.29%), Solar Village (1.67%), and Dalanzadgad (0.64%) indicate an increasing trend, while Cairo (−0.38%), Masdar (−2.31%), Dushanbe (−1.18%), and Lahore (−0.10%) indicate a decreasing trend in AODs during the study period. Similarly, the results of characterizing aerosol types show that the highest percentage of desert dust aerosols (68%), mixed aerosols (86%), and biomass burning aerosols (15%) are found over Tamanrasset, Lahore, and Dalanzadgad AERONET stations. The study revealed a strong correlation between AODs and visibility, a moderate correlation with temperature, and a low correlation with other meteorological parameters (wind speed, wind direction, and relative humidity) in the study region. The results of the study are very encouraging and enhance our confidence in using historical AERONET data to improve our understanding of atmospheric aerosols’ characteristics.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference62 articles.

1. Finlayson-Pitts, B., and Pitts, J. (2000). Chemistry of the Upper and Lower Atmosphere, Elsevier.

2. Pachauri, R.K., and Reisinger, A. (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.

3. IPCC (2021, February 03). IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Available online: https://www.ipcc.ch/srccl/.

4. Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006;Streets;J. Geophys. Res. Atmos.,2009

5. Global dimming and brightening: A review;Wild;J. Geophys. Res. Atmos.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3