Evaluating Drought Effects on Soil: Innovative Soil Salinity Monitoring via SAR Data, Sentinel-2 Imagery, and Machine Learning Algorithms in Kerkennah Archipelago

Author:

Hihi Sarra12,Katlane Rim3,Kilani Boubaker3,Zekri Mohamed Waddah4,Bensalah Rafik1,Siewert Christian2,Kallel Monem1

Affiliation:

1. Georesources and Environment Department, National Engineering School of Sfax ENIS, Sfax 3038, Tunisia

2. Fakultät Landbau/Umwelt/Chemie, Hochschule für Technik und Wirtschaft—HTW Dresden, 01008 Dresden, Germany

3. Geomatic and Geosystems (LR19ES07)/PRODIG (UMR 8586), University of Mannouba, FLAH, University Campus, Manouba 2010, Tunisia

4. Technische Universität Dresden, 01069 Dresden, Germany

Abstract

The Kerkennah archipelago in Tunisia is one of the most vulnerable areas where the influence of climate change is undeniable. Soil salinization has emerged as a major consequence of climate variation on this island. In this study, remote sensing techniques were implemented to develop a model for predicting soil salinity from satellite images. Machine learning algorithms, Sentinel-1 and Sentinel-2 data, and ground truth measurements were used to estimate soil salinity. Several algorithms were considered to achieve accurate findings. These algorithms are categorized as polynomial regression, random forest regression, exponential regression, and linear regression. The results demonstrate that exponential regression is the pre-eminent algorithm for estimating soil salinity with high predictive accuracy of R2 = 0.75 and RMSE = 0.47 ds/m. However, spatiotemporal soil salinity maps reveal distinct and clear distribution patterns, highlighting salty areas (i.e., sebkhas) and agricultural parcels. Thus, through the model, we explore areas of moderately high salinity within agricultural lands that could be affected by irrigation practices. The present work demonstrates a reliable model for soil salinity monitoring in the Kerkennah archipelago and inspires more successful technologies such as remote sensing and machine learning to improve the estimation of soil salinity in climate-affected vulnerable areas.

Funder

Deutsche Akademische Austausch dienst

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference46 articles.

1. Climate Change Impacts on the Mediterranean Coastal Zones;Brochier;SSRN J.,2001

2. Climate change and its impact on biodiversity and human welfare;Shivanna;Proc. Indian Natl. Sci. Acad.,2022

3. Griggs, G., and Reguero, B.G. (2021). Coastal Adaptation to Climate Change and Sea-Level Rise. Water, 13.

4. Étienne, L. (2017). La Salinisation des Sols dans L’archipel de Kerkennah, Tunisie. Mappemonde, 119.

5. Etienne, L. (2023, September 25). Accentuation récente de la vulnérabilité liée à la mobilité du trait de côte et à la salinisation des sols dans l’archipel de Kerkennah (Tunisie). Thèse de doctorat. Université Paris Diderot (Paris 7) Sorbonne Paris Cité; Université de Sfax (Faculté des Lettres et Sciences Humaines). 326 p. 2014. Available online: https://theses.hal.science/tel-01075029.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3