Intelligent Early Fault Diagnosis of Space Flywheel Rotor System

Author:

Liao Hui1ORCID,Xie Pengfei23,Deng Sier14,Wang Hengdi4

Affiliation:

1. School of Mechatronics Engineering, Northwestern Polytechnical University, Xi’an 710071, China

2. School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China

3. Luoyang Bearing Research Institute Co., Ltd., Luoyang 471039, China

4. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, China

Abstract

Three frequently encountered problems—a variety of fault types, data with insufficient labels, and missing fault types—are the common challenges in the early fault diagnosis of space flywheel rotor systems. Focusing on the above issues, this paper proposes an intelligent early fault diagnosis method based on the multi-channel convolutional neural network with hierarchical branch and similarity clustering (HB-SC-MCCNN). First, a similarity clustering (SC) method is integrated into the parameter-shared dual MCCNN architecture to set up as the basic structural block. The hierarchical branch model and additional loss are then added to SC-MCCNN to form a hierarchical branch network, which simplifies the problem of fault multi-classification into binary classification with multi-steps. Based on the self-learning characteristics of the proposed model, the unlabeled data and the missing fault types in the training set are re-labeled to realize the re-training of the network. The results of the experiments for comparing the abilities between the proposed method and several advanced deep learning models confirm that on the established early fault dataset of the space flywheel rotor system, the proposed method successfully achieves the hierarchical diagnosis and presents stronger competitiveness in the case of insufficient labeled data and missing fault types at the same time.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3