Influence of the Low-Frequency Error of the Residual Orbit on Recovering Time-Variable Gravity Field from the Satellite-To-Satellite Tracking Mission

Author:

Liang Lei,Yu Jinhai,Wang Changqing,Zhong Min,Feng WeiORCID,Wan Xiaoyun,Chen Wei,Yan Yihao

Abstract

When using the dynamic approach to recover the time-variable gravity field, the reference orbit generated by the perturbation model and the non-conservative force observed from the accelerometer should be introduced at first, and then the observation equations of the residual orbit and the residual range rate are established. This introduces a perturbation model error and instrument noise. Thus, there are low-frequency errors in the residual orbit and the residual range rate. Currently, most studies only focus on the low-frequency error of the residual range rate, neglecting the influence of the low-frequency error in the residual orbit. Therefore, under the condition of the perturbation model error and instrument noise including the constant term and 1CPR term, the low-frequency error formulas of the residual orbit and residual range rate are derived according to the characteristics of the solution of the Hill equation. Then, the influence of the low-frequency error on the residuals is analyzed by using the simulation and the real data processing respectively. In the simulation and real data processing, the accuracy of the recovered gravity field can maintain a good consistency for different arc lengths by removing the low-frequency error in the residual orbit. Finally, the time-variable gravity field model UCAS-IGG (University of Chinese Academy of Sciences-Institute of Geodesy and Geophysics) was solved from January 2005 to February 2010 by removing the low-frequency error of the residual orbit and residual range rate. Compared with the official institutions, the UCAS-IGG presents a good consistency in the estimating time-variable gravity field signal. This study demonstrates how the effect of the low-frequency error of the residual orbit should be taken into consideration when the longer arc length is used to recover a time-variable gravity field. Using a long arc length can reduce the variables of the initial state and recover the influence of the small force.

Funder

Major Research Plan of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference60 articles.

1. GRACE Measurements of Mass Variability in the Earth System

2. The gravity recovery and climate experiment: Mission overview and early results

3. GGM02 – An improved Earth gravity field model from GRACE

4. Gravity Recovery and Climate Experiment UTCSR Level-2 Processing Standards Document for Level-2 Product Release 005https://www.researchgate.net/publication/289630299_UTCSR_Level-2_Processing_Standards_Document_for_Level-2_Product_Release_0005_Center_for_Space_Research_Technical_Report_GRACE

5. GFZ GRACE level-2 processing standards document for level-2 product release 0005;Dahle;Sci. Tech. Rep. Data,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3