Interannual Climate Variability in the West Antarctic Peninsula under Austral Summer Conditions

Author:

Santamaría-del-Ángel EduardoORCID,Cañon-Páez Mary-LuzORCID,Sebastiá-Frasquet Maria-TeresaORCID,González-Silvera AdrianaORCID,Gutierrez Angelica-L.,Aguilar-Maldonado Jesús-A.ORCID,López-Calderón JorgeORCID,Camacho-Ibar VíctorORCID,Franco-Herrera Andrés,Castillo-Ramírez Alejandra

Abstract

This study aimed to describe the interannual climate variability in the West Antarctic Peninsula (WAP) under austral summer conditions. Time series of January sea-surface temperature (SST) at 1 km spatial resolution from satellite-based multi-sensor data from Moderate Resolution Imaging Spectrometer (MODIS) Terra, MODIS Aqua, and Visible Infrared Imager Radiometer Suite (VIIRS) were compiled between 2001 and 2020 at localities near the Gerlache Strait and the Carlini, Palmer, and Rothera research stations. The results revealed a well-marked spatial-temporal variability in SST at the WAP, with a one-year warm episode followed by a five-year cold episode. Warm waters (SST > 0 °C) reach the coast during warm episodes but remain far from the shore during cold episodes. This behavior of warm waters may be related to the regional variability of the Antarctic Circumpolar Current, particularly when the South Polar Front (carrying warm waters) reaches the WAP coast. The WAP can be divided into two zones representing two distinct ecoregions: the northern zone (including the Carlini and Gerlache stations) corresponds to the South Shetland Islands ecoregion, and the southern zone (including the Palmer and Rothera stations) corresponds to the Antarctic Peninsula ecoregion. The Gerlache Strait is likely situated on the border between the two ecoregions but under a greater influence of the northern zone. Our data showed that the Southern Annular Mode (SAM) is the primary driver of SST variability, while the El Niño Southern Oscillation (ENSO) plays a secondary role. However, further studies are needed to better understand regional climate variability in the WAP and its relation with SAM and ENSO; such studies should use an index that adequately describes the ENSO in these latitudes and addresses the limitations of the databases used for this purpose. Multi-sensor data are useful in describing the complex climate variability resulting from the combination of local and regional processes that elicit different responses across the WAP. It is also essential to continue improving SST approximations at high latitudes.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3