Analysis of Near-Cloud Changes in Atmospheric Aerosols Using Satellite Observations and Global Model Simulations

Author:

Várnai Tamás,Marshak AlexanderORCID

Abstract

This paper examines cloud-related variations of atmospheric aerosols that occur in partly cloudy regions containing low-altitude clouds. The goal is to better understand aerosol behaviors and to help better represent the radiative effects of aerosols on climate. For this, the paper presents a statistical analysis of a multi-month global dataset that combines data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite instruments with data from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) global reanalysis. Among other findings, the results reveal that near-cloud enhancements in lidar backscatter (closely related to aerosol optical depth) are larger (1) over land than ocean by 35%, (2) near optically thicker clouds by substantial amounts, (3) for sea salt than for other aerosol types, with the difference from dust reaching 50%. Finally, the study found that mean lidar backscatter is higher near clouds not because of large-scale variations in meteorological conditions, but because of local processes associated with individual clouds. The results help improve our understanding of aerosol-cloud-radiation interactions and our ability to represent them in climate models and other atmospheric models.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3