Earthquake Damage Region Detection by Multitemporal Coherence Map Analysis of Radar and Multispectral Imagery

Author:

Hasanlou MahdiORCID,Shah-Hosseini Reza,Seydi Seyd TeymoorORCID,Karimzadeh SadraORCID,Matsuoka MasashiORCID

Abstract

Earth, as humans’ habitat, is constantly affected by natural events, such as floods, earthquakes, thunder, and drought among which earthquakes are considered one of the deadliest and most catastrophic natural disasters. The Iran-Iraq earthquake occurred in Kermanshah Province, Iran in November 2017. It was a 7.4-magnitude seismic event that caused immense damages and loss of life. The rapid detection of damages caused by earthquakes is of great importance for disaster management. Thanks to their wide coverage, high resolution, and low cost, remote-sensing images play an important role in environmental monitoring. This study presents a new damage detection method at the unsupervised level, using multitemporal optical and radar images acquired through Sentinel imagery. The proposed method is applied in two main phases: (1) automatic built-up extraction using spectral indices and active learning framework on Sentinel-2 imagery; (2) damage detection based on the multitemporal coherence map clustering and similarity measure analysis using Sentinel-1 imagery. The main advantage of the proposed method is that it is an unsupervised method with simple usage, a low computing burden, and using medium spatial resolution imagery that has good temporal resolution and is operative at any time and in any atmospheric conditions, with high accuracy for detecting deformations in buildings. The accuracy analysis of the proposed method found it visually and numerically comparable to other state-of-the-art methods for built-up area detection. The proposed method is capable of detecting built-up areas with an accuracy of more than 96% and a kappa of about 0.89 in overall comparison to other methods. Furthermore, the proposed method is also able to detect damaged regions compared to other state-of-the-art damage detection methods with an accuracy of more than 70%.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3