High-Resolution Gridded Population Datasets: Exploring the Capabilities of the World Settlement Footprint 2019 Imperviousness Layer for the African Continent

Author:

Palacios-Lopez DanielaORCID,Bachofer FelixORCID,Esch ThomasORCID,Marconcini Mattia,MacManus KyttORCID,Sorichetta AlessandroORCID,Zeidler JulianORCID,Dech Stefan,Tatem Andrew J.,Reinartz PeterORCID

Abstract

The field of human population mapping is constantly evolving, leveraging the increasing availability of high-resolution satellite imagery and the advancements in the field of machine learning. In recent years, the emergence of global built-area datasets that accurately describe the extent, location, and characteristics of human settlements has facilitated the production of new population grids, with improved quality, accuracy, and spatial resolution. In this research, we explore the capabilities of the novel World Settlement Footprint 2019 Imperviousness layer (WSF2019-Imp), as a single proxy in the production of a new high-resolution population distribution dataset for all of Africa—the WSF2019-Population dataset (WSF2019-Pop). Results of a comprehensive qualitative and quantitative assessment indicate that the WSF2019-Imp layer has the potential to overcome the complexities and limitations of top-down binary and multi-layer approaches of large-scale population mapping, by delivering a weighting framework which is spatially consistent and free of applicability restrictions. The increased thematic detail and spatial resolution (~10 m at the Equator) of the WSF2019-Imp layer improve the spatial distribution of populations at local scales, where fully built-up settlement pixels are clearly differentiated from settlement pixels that share a proportion of their area with green spaces, such as parks or gardens. Overall, eighty percent of the African countries reported estimation accuracies with percentage mean absolute errors between ~15% and ~32%, and 50% of the validation units in more than half of the countries reported relative errors below 20%. Here, the remaining lack of information on the vertical dimension and the functional characterisation of the built-up environment are still remaining limitations affecting the quality and accuracy of the final population datasets.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3