A Model to Estimate Leaf Area Index in Loblolly Pine Plantations Using Landsat 5 and 7 Images

Author:

Kinane Stephen M.,Montes Cristian R.,Albaugh Timothy J.ORCID,Mishra Deepak R.ORCID

Abstract

Vegetation indices calculated from remotely sensed satellite imagery are commonly used within empirically derived models to estimate leaf area index in loblolly pine plantations in the southeastern United States. The data used to parameterize the models typically come with observation errors, resulting in biased parameters. The objective of this study was to quantify and reduce the effects of observation errors on a leaf area index (LAI) estimation model using imagery from Landsat 5 TM and 7 ETM+ and over 1500 multitemporal measurements from a Li-Cor 2000 Plant Canopy Analyzer. Study data comes from a 16 quarter 1 ha plot with 1667 trees per hectare (2 m × 3 m spacing) fertilization and irrigation research site with re-measurements taken between 1992 and 2004. Using error-in-variable methods, we evaluated multiple vegetation indices, calculated errors associated with their observations, and corrected for them in the modeling process. We found that the normalized difference moisture index provided the best correlation with below canopy LAI measurements (76.4%). A nonlinear model that accounts for the nutritional status of the stand was found to provide the best estimates of LAI, with a root mean square error of 0.418. The analysis in this research provides a more extensive evaluation of common vegetation indices used to estimate LAI in loblolly pine plantations and a modeling framework that extends beyond the typical linear model. The proposed model provides a simple to use form allowing forest practitioners to evaluate LAI development and its uncertainty in historic pine plantations in a spatial and temporal context.

Funder

U.S. Department of Agriculture

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3